Chemotaxis(-fluid) systems with logarithmic sensitivity and slow consumption: Global generalized solutions and eventual smoothness

نویسندگان

چکیده

We consider the system$ \begin{align*} \begin{cases} n_t + u \cdot \nabla n = \Delta - \chi (\frac{n}{c} c), \\ c_t c nf(c), u_t (u \nabla) P \phi, \quad 0, \end{cases} \end{align*} $in smooth bounded domains $ \Omega \subset \mathbb R^N $, N \in for given f \ge 0 \phi and complemented with initial homogeneous Neumann–Neumann–Dirichlet boundary conditions, which models aerobic bacteria in a fluid drop. assume f(0) f'(0) that is, decays slower than linearly near construct global generalized solutions provided either 2 or > no is present.If additionally we next prove this solution eventually becomes stabilizes large-time limit. emphasize these results require smallness neither of nor data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

intercultural sensitivity instruction and interfaces among iranian efl learners intercultural sensitivity,language proficiency,ehnic and demograhic backgrounds:an ethnocentrism vs.ethnorelativism perspective

monumental changes occurring on a daily basis have altered the world into a global village of expanding technology and shrinking geography in which preparing language learners for intercultural communication seems to be a sine qua non for modern language education. employing a cross-sectional design in its first phase, this study investigated the intercultural sensitivity and language proficien...

15 صفحه اول

A coupled chemotaxis-fluid model: Global existence

We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis–Navier–Stokes system in two space dimensions, we obtain global existence for large data. In three space di...

متن کامل

Global solutions to a chemotaxis system with non-diffusive memory

In this article, a existence theorem of global solutions with small initial data belonging to L ∩ L, (n < p ≤ ∞) for a chemotaxis system are given on the whole space R, n ≥ 3. In the case p = ∞, our global solution is integrable with respect to the space variable on some time interval, and then conserves the mass for a short time, at least. The system consists of a chemotaxis equation with a lo...

متن کامل

Global Solutions of some Chemotaxis and Angiogenesis Systems in high space dimensions

We consider two simple conservative systems of parabolic-elliptic and parabolic-degenerate type arising in modeling chemotaxis and angiogenesis. Both systems share the same property that when the L d 2 norm of initial data is small enough, where d ≥ 2 is the space dimension, then there is a global (in time) weak solution that stays in all the L spaces with max{1; d 2 − 1} ≤ p < ∞. This result i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B

سال: 2022

ISSN: ['1531-3492', '1553-524X']

DOI: https://doi.org/10.3934/dcdsb.2022232